skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dowell, Earl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. The dynamic stability of a cantilevered beam actuated by a nonconservative follower force has previously been studied for its interesting dynamical properties and its applications to engineering designs such as thrusters. However, most of the literature considers a linear model. A modest number of papers consider a nonlinear model. Here, a system of nonlinear equations is derived from a new energy approach for an inextensible cantilevered beam with a follower force acting upon it. The equations are solved in time, and the agreement is shown with published results for the critical force including the effects of damping (as determined by a linear model). This model readily allows the determination of both in-plane and out-of-plane deflections as well as the constraint force. With this novel transparency into the system dynamics, the nonlinear postcritical limit cycle oscillations (LCO) are studied including a concentration on the force which enforces the inextensibility constraint. 
    more » « less